If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-10=132
We move all terms to the left:
x^2+x-10-(132)=0
We add all the numbers together, and all the variables
x^2+x-142=0
a = 1; b = 1; c = -142;
Δ = b2-4ac
Δ = 12-4·1·(-142)
Δ = 569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{569}}{2*1}=\frac{-1-\sqrt{569}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{569}}{2*1}=\frac{-1+\sqrt{569}}{2} $
| 2(m-5)=6 | | (2x+12)+(8x-18)=180 | | 11+n-4-7=-7n-3n | | 12x^2-66x+272=0 | | 2^x^+^1=16 | | y/5+2=-9 | | 1/6(s+6)=1 | | -9=x+514 | | 2/3w-4/7=-3/2 | | -3n+5n=12 | | -3x-29=x+3 | | 5x=25x=5 | | 2=4–2w | | 14(x-3-22x=-18 | | -1/5-1/2w=-1/7 | | -2(y-1)=-8y-40 | | 8n+6+6n=6 | | 3(x-2)/7=21 | | 8v+39=3(v+8) | | |2x+3|=6 | | 1/5(m-5)=1 | | 5,7-0,3x=1,7x-0,3 | | 1/5*n=3 | | 3(w+5)=6w+21 | | 4(x-3)+5=5 | | 18=34+u | | 4(x-4)+5=-7 | | .2(4x-5)=-(x-8) | | -3+x/9=-7 | | .2(4x-5)=-(x-8 | | 0.009=10x | | 2(x=4)=18 |